Abstract
In this paper, we present a computational method for solving optimal control problems and the controlled Duffing oscillator. This method is based on state parametrization. In fact, the state variable is approximated by Boubaker polynomials with unknown coefficients. The equation of motion, performance index and boundary conditions are converted into some algebraic equations. Thus, an optimal control problem converts to a optimization problem, which can then be solved easily. By this method, the numerical value of the performance index is obtained. Also, the control and state variables can be approximated as functions of time. Convergence of the algorithms is proved. Numerical results are given for several test examples to demonstrate the applicability and efficiency of the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Interpolation and Approximation in Scientific Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.