Abstract
Airborne transmission of respiratory aerosols carrying infectious viruses has generated many concerns about cross-contamination risks, particularly in indoor environments. ANSYS Fluent software has been used to investigate the dispersion of the viral particles generated during a coughing event and their transport dynamics inside a safe social-distance meeting room. Computational fluid dynamics based on coupled Eulerian–Lagrangian techniques are used to explore the characteristics of the airflow field in the domain. The main objective of this study is to investigate the effects of the window opening frequency, exhaust layouts, and the location of the air conditioner systems on the dispersion of the particles. The results show that reducing the output capacity by raising the concentration of suspended particles and increasing their traveled distance caused a growth in the individuals' exposure to contaminants. Moreover, decreasing the distance between the ventilation systems installed location and the ceiling can drop the fraction of the suspended particles by over 35%, and the number of individuals who are subjected to becoming infected by viral particles drops from 6 to 2. As well, the results demonstrated when the direction of input airflow and generated particles were the same, the fraction of suspended particles of 4.125%, whereas if the inputs were shifted to the opposite direction of particle injection, the fraction of particles in fluid increased by 5.000%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.