Abstract

The oscillatory behaviors of methane and hydrogen oxidation in a perfectly stirred reactor (PSR) are examined. The work explores the parameter spaces in which oscillatory combustion and ignition take place using heat transfer coefficient, mean residence time, and reactor wall temperatures as variables. An analytic model was developed using an eigenvalue analysis to determine the nature and stability of these oscillations. Both numerical and analytical studies suggest that combustion oscillations occur at the extinction turning point of the hysteresis curve or the boundary of combustion extinction. These oscillations are found to be driven by the coupling of the heat released from the reaction and the heat dissipation through the reactor wall, and these are unstable, which perhaps explains why they were never or rarely observed experimentally. In the case of hydrogen oxidation, we demonstrate the existence of two additional types of oscillations, namely, hybrid oscillation and oscillatory ignition, both of which occur at or near the turning point of ignition. These oscillations are stable and driven by detailed reaction kinetics. The numerical results for hydrogen oxidation were compared with previous experiments and found to be within 5K of the observed wall temperature where oscillations were observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.