Abstract

Alzheimer's Disease (AD) is a neurodegenerative disease, of which β-amyloid (Aβ) deposition is one of the most important pathological features. It has been reported that during Aβ aggregation, the microenvironment around the Aβ protein is altered in terms of viscosity and polarity. In this work, we developed five novel hemicyanine fluorescent probes (MZs). After screening the photochemical properties, MZ-2 and 3 were found to enable the rapid detection of Aβ42 aggregates, which were also sensitive to ambient viscosity. After comparison the structure of probes, we also observed that extensions of conjugated π-systems effectively cause redshifts of excitation wavelength. In the meanwhile, hydroxyl groups with weaker ionization strengths are more responsive to Aβ42 aggregates than sulfonate groups, probably due to the small size of the hydroxyl group and the acidity. Overall, MZ-2 showed the best response to Aβ42 aggregates (15.35-fold) and viscosity (17.6-fold). MZ-2 can quickly cross the blood-brain barrier (BBB), enabling high-fidelity imaging of Aβ42 aggregates in the mice brain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.