Abstract

Chlorophenols (CPs) are still used as raw material or intermediate in some industries. Photocatalytic oxidation is free from secondary pollution, but the efficiency is restricted by some main factors. In this study, a novel high efficiency tubular up-flow magnetic film (TUMF) photocatalytic system was investigated based on the magnetic lanthanum doping core-shell Fe3O4@SiO2@TiO2 (La-FST) nanoparticles. When the dosage of La-FST was 0.4 g/L, the flow velocity was 94.2 mL/min, and the circulated irradiation of 15 W maintained 40 min, the average removal rate of 2,4-dichlorophenol (2,4-DCP) was reduced significantly from 10 mg/L to 0.0803 mg/L by TUMF system, meeting the limits of the particular items (0.093 mg/L) from national environmental quality standards for surface water, avoiding the problem of photocatalyst separation and loss. The photoinduced holes (h+) was the key active radical to oxidize 2,4-DCP, and the main factors of TUMF system could be well controlled to achieve satisfactory effluent quality. A prediction method of photocatalytic reaction time in a multistage series TUMF system was established to remove 2,4-DCP from 100 mg/L to 0.5 mg/L, saving 86 min. The novel high-efficiency TUMF system provides a technical selection for the photocatalytic degradation of CPs and other refractory organics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.