Abstract

This paper proposes a step-up 3-Ф switched-capacitor multilevel inverter topology with minimal switch count and voltage stresses. The proposed topology is designed to provide five distinct output voltage levels from a single isolated dc source, making it suitable for medium and low-voltage applications. Each leg of the proposed topology contains four switches, one power diode, and a capacitor. The switching signals are also generated using a staircase universal modulation method. As a result, the proposed topology will operate at both low and high switching frequencies. To highlight the proposed topology’s advantages, a comparison of three-phase topologies wasperformed in terms of the switching components, voltage stress, component count per level factor, and cost function withthe recent literature. The topology achieved an efficiency of about 96.7% with dynamic loading, and 75% of the switches experienced half of the peak output voltage (VDC), whereas the remaining switches experienced peak output voltage (2VDC) as voltage stress. The MATLAB/Simulink environment was used to simulate the proposed topology, and a laboratory prototype was also built to verify the inverter’s theoretical justifications and real-time performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.