Abstract
In this paper, fabrication and characterization of bare and doped CdS nanoparticles as well as investigating the luminescence properties of these particles as an important II-VI semiconductor are presented. A novel Thermochemical method was used for synthesis of these quantum dots. Thiols were used as the capping agent to prevent further growth during fabrication process. The application of TGA as a capping agent instead of TG was studied as a novel idea in this paper and was used practically in the synthesis of semiconductor nanoparticles. Using this process resulted in particles with sizes between 3 - 7 nm. Several samples were synthesized and characterized under various Mn ions doping ratio from 1:10 to 1:180, different temperatures from 40℃ to 96℃ and different pH values from 6 to 10. Synthesis of CdS nanoparticles with high Mn ions concentration resulted in luminescence decrement, while luminescence of nanoparticles was increased by decreasing Mn/Cd doping ratio until Mn:Cd = 1:180. The best fabrication temperature was obtained at 96℃ and the highest luminescence was observed at the pH value of 9. A theoretical explanation for the behavior of fabricated high luminescent quantum dots is presented based on the principles of quantum mechanics.
Highlights
IntroductionThe optoelectronic properties of semiconductor nanoparticles are strongly dependent on their size, due to the well-known quantum confinement effects [1]
Synthesis of CdS nanoparticles with high Mn ions concentration resulted in luminescence decrement, while luminescence of nanoparticles was increased by decreasing Mn/Cd doping ratio until Mn:Cd = 1:180
A theoretical explanation for the behavior of fabricated high luminescent quantum dots is presented based on the principles of quantum mechanics
Summary
The optoelectronic properties of semiconductor nanoparticles are strongly dependent on their size, due to the well-known quantum confinement effects [1]. Among semiconductor nano-materials, CdS nanoparticles have attracted considerable attention due to their unique properties, which do not present in their bulk materials [2]. These unique properties introduce them as the important and useful materials for various applications such as solar cells, photodetectors, light-emitting diodes, photoelectrolysis and biological labels [3] [4] [5] [6]. A thermochemical method to fabricate the bare and Mn-doped CdS nanoparticles of small sizes is developed. One of contributions of this paper is the utilization of TGA to improve the capping of nanoparticles and reach better optical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science and Chemical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.