Abstract
A novel theoretical framework for analyzing dendritic transients is introduced. This approach, called the method of moments, is an extension of Rall's cable theory for dendrites. It provides analytic investigation of voltage attenuation, signal delay, and synchronization problems in passive dendritic trees. In this method, the various moments of a transient signal are used to characterize the properties of the transient. The strength of the signal is measured by the time integral of the signal, its characteristic time is determined by its centroid ("center of gravity"), and the width of the signal is determined by a measure similar to the standard deviation in probability theory. Using these signal properties, the method of moments provides theorems, expressions, and efficient algorithms for analyzing the voltage response in arbitrary passive trees. The method yields new insights into spatiotemporal integration, coincidence detection mechanisms, and the properties of local interactions between synaptic inputs in dendritic trees. The method can also be used for matching dendritic neuron models to experimental data and for the analysis of synaptic inputs recorded experimentally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.