Abstract
Surface electromyography (EMG) signal from trunk muscles is often contaminated by electrocardiography (ECG) artifacts. This study presents a novel method for muscle activity onset detection by processing surface EMG against ECG artifacts. The method does not require removal of ECG artifacts from raw surface EMG signals. Instead, it applies the sample entropy (SampEn) analysis to highlight EMG activity and suppress ECG artifacts in the signal complexity domain. A SampEn threshold can then be determined for detection of muscle activity. The performance of the proposed method was examined with different SampEn analysis window lengths, using a series of combinations of ‘clean’ experimental EMG and ECG recordings over a wide range of signal to noise ratios (SNRs) from −10 to 10 dB. For all the examined SNRs, the window length of 128 ms yielded the best performance among all the tested lengths. Compared with the conventional amplitude thresholding and integrated profile methods, the SampEn analysis based method achieved significantly better performance, demonstrated as the shortest average latency or error among the three methods (p < 0.001 for any of the examined SNRs except 10 dB).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.