Abstract

AbstractA novel technique is presented to simultaneously measure temperature and crystallinity insitu during the rapid thermal annealing of thin Si / SiGe films on transparent substrates for active matrix liquid crystal display applications. The technique uses acoustic waves to monitor temperature, by measuring changes in velocity with temperature. The technique enables accurate tracking of crystalline phase transitions along with temperature, since it is independent of emissivity. This provides a methodology for closed-loop control and end-point detection. The experiments on thin amorphous Si on Quartz demonstrate temperature repeatability of 2%. Also, the technique proved sensitive enough to detect the onset of nucleation, as evidenced by TEM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.