Abstract

Hybrid automatic repeat request (HARQ) is employed for the Evolved Universal Terrestrial Radio Access (E-UTRA) downlink. Each user equipment (UE) sends its ACK/NACK corresponding to the downlink data reception to the base station via a physical uplink control channel (PUCCH). The ACK/NACK signals from the UE are first code spread by the cyclic shift (CS) sequences, and then code spread again by the orthogonal cover (OC) sequences. The ACK/NACK signals from each UE are multiplexed by means of code division multiple access (CDMA), however, it is difficult for the conventional PUCCH code design to satisfy the required bit error rate (BER) of 10-3 [1] in fast-fading environments because of inter-code interference (ICI) among the OC sequences. Therefore, resource management of PUCCH is required depending on the mobility of the UEs to maximize the performance of the ACK/NACK signals and the capacity of PUCCH simultaneously. In this paper, we propose a novel code design for PUCCH, which can suppress the effects of ICI among the OC sequences, and thus can simplify the resource management of PUCCH. The simulation evaluations confirm that the proposed code design can significantly improve the performance of the ACK/NACK signals via PUCCH in fast-fading environments, and any complicated resource management based on the mobility of the UEs are not necessary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.