Abstract

Aiming for precise, real-time, and on-site analysis of proteins, an innovative binary-emission fluorescence imprinted polymer was designed by sol-gel method after mixing MIL-101(Cr), green CdTe (g-CdTe) and red CdTe (r-CdTe) for detection of protein. In this proposal, MIL-101(Cr), as a favorable supporter, provided high surface area and porosity for imprinting sites, which ameliorated the transfer rate and the sensitivity of the nanosensor. And g-CdTe and r-CdTe were served as signal transduction for dual-emission response. Based on strengthened recognition reaction between high-affinity imprinting sites and protein, the fluorescence intensities of g-CdTe and r-CdTe yielded conspicuous two responses at 528 nm and 634 nm for protein under the excitation of 350 nm. The cytochrome c (Cyt c) and trypsin were served as model proteins to verify the generality of strategy. Given prominent merits of MIL-101(Cr), g-CdTe/r-CdTe@MIL-101(Cr)@MIP exhibited good linear range of 1–30 μM for Cyt c and 0.15–4 μM for trypsin, and the limit of detection were 0.13 μM and 0.014 μM, respectively. Significantly, an unsophisticated smartphone-based sensing device was developed by integrating g-CdTe/r-CdTe@MIL-101(Cr)@MIP with a 3D printing portable device to obtain precise on-site results. As expected, this portable platform was successfully applied for monitoring Cyt c and trypsin with a detection limit of 0.71 μM and 0.026 μM, respectively. These results indicated this dual-response molecularly imprinted fluorescence senor based on smartphone provided promising perspectives on futural on-site protein analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.