Abstract

Pancreatic carcinoma is a still unsolved health problem all over the world with poor prognosis and high mortality rate. YLT256, a novel synthesized chemical small inhibitor, displays potent antineoplastic activities via inducing apoptosis both in vitro and in vivo. In this study, we found that YLT256 showed growth inhibition against a broad spectrum of human cancer cell lines and pancreatic cancer cell line BxPc-3 was the most sensitive with an IC50 of 0.42μM. We also found YLT256 could induce apoptosis of BxPc-3 cells in a dose-dependent manner. Western blot analysis revealed that the occurrence of its apoptosis was associated with activation of caspases-3 and -9, up-regulation of pro-apoptotic Bak, and down-regulation of anti-apoptotic Bcl-2. Moreover, YLT256-treated resulted in changes of mitochondrial membrane potential (Δψm), and generation of reactive oxygen species (ROS). Furthermore, our data also revealed that YLT256 suppressed the growth of established tumor-bearing xenograft models without obvious side effects. Immunohistochemical analyses and TUNEL assay revealed an increase in cleaved caspase-3-positive cells and TUNEL-positive cells, a decrease in Ki67-positive cells upon YLT256. Together, all the results of present study provided evidence demonstrating that YLT256 could be a promising potential drug candidate for pancreatic cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.