Abstract
Stochastic models for finite binary vectors are widely used in sociology, with examples ranging from social influence models on dichotomous behaviors or attitudes to models for random graphs. Exact sampling for such models is difficult in the presence of dependence, leading to the use of Markov chain Monte Carlo (MCMC) as an approximation technique. While often effective, MCMC methods have variable execution time, and the quality of the resulting draws can be difficult to assess. Here, we present a novel alternative method for approximate sampling from binary discrete exponential families having fixed execution time and well-defined quality guarantees. We demonstrate the use of this sampling procedure in the context of random graph generation, with an application to the simulation of a large-scale social network using both geographical covariates and dyadic dependence mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.