Abstract

Background:The demand for neuromodulatory and recording tools has resulted in a surge of publications describing techniques for fabricating devices and accessories in-house suitable for neurological recordings. However, many of these fabrication protocols use equipment which are not common to biological laboratories, thus limiting researchers to the use of commercial alternatives.New method:We have developed a simple yet robust implantable stimulating surface electrode which can be fabricated in all wet-bench laboratories.Results:Female Sprague-Dawley rats received epidural implantation of the electrodes over the fore and hind limb areas of their motor cortex. Stimulation of the motor cortex successfully evoked fore- and hind limb motor outputs. The device was also able to record surface potentials of the motor cortex following epidural stimulation of the spinal cord.Comparisons with existing methods:For stimulation of the motor cortex, often stiff stainless or copper wires are roughly tucked underneath the skull, with little accuracy of localization. While, commercially available devices utilize burr holes and screw electrodes. Our new electrode design provides us stereotaxic accuracy that was not previously available.Conclusion:We developed a chronic implantable electrode capable of being fabricated in all wet-labs, are robust, versatile and electrically sensitive enough for long-term chronic use. The simple and versatile electrode design provides scientific, economical and ethical benefits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.