Abstract

AbstractThe electrocatalytic oxidation of rapamycin, one of the most studied immunosuppressant, cancer‐preventing drug, is investigated for the first time on the surface of the modified carbon paste electrode prepared by incorporating multi‐walled carbon nanotubes (MWCNTs) and conductive polymer pyrrole using differential pulse voltammetry (DPV). Rapamycin exhibited a well‐defined oxidation peak at +1.1 V (versus Ag/AgCl) in Briton Robinson buffer solution with a pH 4.0. Effect of the most important experimental parameters was optimized and obtained signals are linear to the concentration of rapamycin in the range from 0.1 to 20 μM with 0.06 μM limit of detection. The repeatability is calculated as ±2 % and the reproducibility as ±5 %. The possible interfering compounds were tested showing negligible effect and the sensor was successfully applied for the determination of rapamycin in commercial pharmaceutical formulations with obtained recoveries in the range from 98 % to 102 %.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.