Abstract

We have examined the expression of glycogen synthase kinase-3beta in oocytes and early embryos of Xenopus and found that the protein is developmentally regulated. In resting oocytes, GSK-3beta is active and it is inactivated on maturation in response to progesterone. GSK-3beta inactivation is necessary and rate limiting for the cell cycle response to this hormone and the subsequent accumulation of beta-catenin. Overexpression of a dominant negative form of the kinase accelerates maturation, as does inactivation by expression of Xenopus Dishevelled or microinjection of an inactivating antibody. Cell cycle inhibition by GSK-3beta is not mediated by the level of beta-catenin or by a direct effect on either the MAP kinase pathway or translation of mos and cyclin B1. These data indicate a novel role for GSK-3beta in Xenopus development: in addition to controlling specification of the dorsoventral axis in embryos, it mediates cell cycle arrest in oocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.