Abstract

A novel robust Kalman filter based on Gaussian-Student’s t mixture (GSTM) distribution is proposed to address the filtering problem of a linear system with non-stationary heavy-tailed measurement noise. The mixing probability is recursively estimated by using its previous estimates as prior information, and the state vector, the auxiliary parameter, the Bernoulli random variable and the mixing probability are jointly estimated utilizing the variational Bayesian method. The excellent performance of the proposed robust Kalman filter, compared with the existing state-of-the-art filters, is illustrated by a target tracking simulation results under the case of non-stationary heavy-tailed measurement noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.