Abstract

ABSTRACTRadiant floor systems have the potential to reduce energy consumption and the carbon footprint of buildings. This study analyzed a novel radiant panel configuration comprising a metal plate with small spikes that can be pressed into cement board or wood. The behavior of this configuration was simulated for different materials for the metal plate, spike dimensions, and varying spacing between spikes. An annual energy simulation model compared the radiant panel configuration with the traditional concrete-based system. Simulations were run under heating dominant, cooling dominant, and neutral conditions; significant cost savings and greenhouse gas emission reduction were seen across all scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.