Abstract

The competitiveness of reduced graphene oxide (GO) based composite can be significantly improved when the raw material of GO become the low-cost microcrystalline graphite mine. Herein, we first successfully fabricate high-quality microcrystalline graphite GO (MGO) with small size <1μm by a modified pressurized oxidation approach. Subsequently, Fe3O4@C/PrMGO composite is simply constructed by using porous reduced MGO (PrMGO) to support carbon coated Fe3O4 nanoparticles (Fe3O4@C NPs). The Fe3O4@C/PrMGO composite exhibits high reversible capacity and excellent cyclic stability that a high reversible capacity of 1216mAhg−1 is received after 392 cycles at 100mAg−1. Meanwhile, the composite possesses high rate retentions, superior structural and cycling stability, which are further revealed by rate test, SEM and EIS analyses. The significant advantages of Fe3O4@C/PrMGO composite (low cost, facile operation and high electrochemical performances) endow the composite to be practically promising anode material for next-generation LIBs. This research supplies a new strategy to fabricate low-cost and high performances MGO-based anode materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.