Abstract
A novel linear piezo inertia actuator based on the transverse motion principle is proposed. Under the action of the transverse motion of two parallel leaf-springs, the designed piezo inertia actuator can achieve great stroke movements at a fairly high speed. The presented actuator includes a rectangle flexure hinge mechanism (RFHM) with two parallel leaf-springs, a piezo-stack, a base, and a stage. The mechanism construction and operating principle of the piezo inertia actuator are discussed, respectively. To obtain the proper geometry of the RFHM, we have used a commercial finite element program COMSOL. To investigate the output characteristics of the actuator, the relevant experiment tests including loading capacity, voltage characteristic, and frequency characteristic are adopted. The maximum movement speed and the minimum step size are 27.077 mm/s and 32.5 nm, respectively, confirming that the RFHM with two parallel leaf-springs can be used to design a piezo inertia actuator with a high speed and accuracy. Therefore, this actuator can be used in applications with fast positioning and high accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.