Abstract

Synthetic dyes must be monitored and regulated. We aimed to develop a novel photonic chemosensor for rapidly monitoring synthetic dyes based on colorimetric (chemical interactions with optical probes using microfluidic paper-based analytical devices) and UV–Vis spectrophotometric methods. Various types of gold and silver nanoparticles were surveyed to identify the targets. In the presence of silver nanoprisms, the naked eye could visualize the unique and distinctive color changes of Tartrazine (Tar) to green and Sunset Yellow (Sun) to brown; UV–Vis spectrophotometry validated the results. The developed chemosensor showed linear ranges of 0.07–0.3 mM and 0.05–0.2 mM for Tar and Sun, respectively. Sources of interference had minimal effects, confirming the appropriate selectivity of the developed chemosensor. Our novel chemosensor demonstrated excellent analytical performance for measuring Tar and Sun in several types of orange juice as real samples, confirming its incredible potential for use in the food industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.