Abstract

To address the problem of the weak natural restoration ability of oligotrophic groundwater environments, a novel N/P controlled-release material (CRM) for biostimulation, prepared by an improved method, was developed. CRMs can encapsulate N and P (N/P) salts for sustained release in aquifers. Paraffin-based CRMs can be used to control N/P release rates by adjusting the particle size of CRMs and the mass ratio of the paraffin. The developed CRMs had a more remarkable adaptability to groundwater than other materials. Specifically, 0.4-cm CRMs released N/P stably and efficiently over a wide temperature range (7–25 ℃), and the release properties of various CRMs were not affected by pH. The release of N/P followed Fickian diffusion, and a dissolution-diffusion model was established to elucidate the mechanism of the controlled release. In contrast to bare N/P, CRMs obviously enhanced the biodegradation rate of phenol and prolonged the effectiveness of supplying N/P. The degradation rate of phenol in the CRM system increased by 20.8 %. The different supply modes of N/P, CRMs and bare N/P, resulted in differences in salinity. Metagenomic analysis showed that this difference changed the proportion of various phenol-degrading genera and thus changed the abundance of genes associated with the phenol degradation pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.