Abstract

Ready-to-wear clothing is typically based on the body-shape of human fit models that an apparel company hires. The body-shape difference between a consumer and the fit model of their size results in fit-loss of a certain degree. Aggregate-fit-loss is a concept attempting to quantify and estimate the accumulative fit-loss that a population may encounter. This paper reports on a novel method that minimizes the aggregate-fit-loss of a sizing system for bras, through shape categorization and optimized selection of prototypes (which can be regarded as the most appropriate fit models, or standard dress forms) for the categorized groups. A fit-loss function was introduced that calculates the dissimilarity between any two three-dimensional body scans, via pointwise comparisons of the point-to-origin distances of 9000 points on the scan surface. The within-group aggregate-fit-loss is minimized by an algorithm that returns the optimal prototype for the group. The overall aggregate-fit-loss is reduced by breast shape categorization based on the dissimilarities between the scans. Finally, the constraint of band sizes was brought into the categorization to provide a more feasible solution for improved bra sizing. The findings of this study can also contribute to the optimization of sizing systems for other apparel products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.