Abstract
The auto-regressive integrated moving average (ARIMA) model has shown promise in predicting vehicle velocity and road gradient (V–G) for the purpose of constructing power demands in predictive energy management strategies (PEMS) for electric vehicles (EVs). It offers flexibility, accuracy, and computational efficiency. However, the performance of a conventional ARIMA model with fixed structure parameters can be disappointing when the data fluctuate. To overcome this limitation, a novel and flexible-structure-based ARIMA (FS–ARIMA) is proposed in this paper to improve online prediction performance. First, the sliding window method was developed to produce fitting data in real time based on real local historical data, reducing the online computation time. Secondly, the influence of the sliding window sample size, differencing order, and lag in the model on the prediction accuracy was investigated. Based on this, an FS–ARIMA was proposed to improve the prediction accuracy, where an augmented Dickey–Fuller (ADF) test was developed to select the differencing order in real time and the Bayesian information criterion (BIC) was applied to update the model and determine its lag under an optimal sample size. Lastly, to validate the proposed FS–ARIMA, simulations were conducted using two typical driving cycles collected via experiments, as well as the following three typical driving cycles: the New European Driving Cycle (NEDC), the Urban Dynamometer Driving Schedule (UDDS), and the Worldwide Harmonized Light Vehicles Test Cycle (WLTC). The results demonstrated that FS–ARIMA improved prediction accuracy by approximately 41.63% and 42.19% for the velocity and gradient, respectively. The proposed FS–ARIMA prediction model has potential applications in predictive energy management strategies for EVs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.