Abstract

The fourth most common form of cancer among women is cervical cancer with 569,847new cases and 311,365 reported deaths worldwide in 2018. Cervical cancer is classified as the third leading cause of cancer among women in Malaysia, with approximately 1,682 new cervical cases and about 944 deaths occurred in 2018. Cervical cancer can be detected early by cervical cancer screening. Papanicolaou test, also known as Pap smear test is conducted to detect cancer or precancer in the cervix. The disadvantage of this conventional method is that the sample of microscopic images will risk blurring effects, noise, shadow, lighting and artefact problems. The diagnostic microscopic observation performed by a microbiologist is normally time-consuming and may produce inaccurate results even by experienced hands. Thus, correct diagnosis information is essential to assist physicians to analyze the condition of the patients. In this study, an automatedsegmentation system is proposed to be used as it is more accurate and faster compared to the conventional technique. Using the proposed method in this paper, the image was enhanced by applying a median filter and Partial Contrast Stretching. A segmentation method based on mathematical morphology was performed to segment the nucleus in the Pap smear images. Image Quality Assessment (IQA) which measures the accuracy, sensitivity and specificity were used to prove the effectiveness of the proposed method. The results of the numerical simulation indicate that the proposed method shows a higher percentage of accuracy and specificity with 93.66% and 95.54% respectively compared to Otsu, Niblack and Wolf methods. As a conclusion, the percentage of sensitivity is slightly lower, with 89.20% compared to Otsu and Wolf methods. The results presented here may facilitate improvements in the detection performance in comparison to the existing methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.