Abstract

We propose an efficient and accurate solver for the nonlocal potential in the Davey−Stewartson equations using nonuniform FFT (NUFFT). A discontinuity in the Fourier transform of the nonlocal potential causes accuracy locking if the potential is solved by standard FFT with periodic boundary conditions on a truncated domain. Using the fact that the discontinuity disappears in polar coordinates, we reformulate the potential integral and split it into high and low frequency parts. The high frequency part can be approximated by the standard FFT method, while the low frequency part is evaluated with a high order Gauss quadrature accelerated by nonuniform FFT. The NUFFT solver has O(N log N) complexity, where N is the total number of discretization points, and achieves higher accuracy than standard FFT solver, which makes its use in simulations very attractive. Extensive numerical results show the efficiency and accuracy of the proposed new method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.