Abstract
Ceramic panel collapse will easily lead to the failure of traditional targets. One strategy to solve this problem is to use separate ceramic units as armor panels. Based on this idea, we propose an aluminum matrix composite using pressure infiltration, containing an array of ceramic balls, the reinforcement of which consists of centimeter-scale SiC balls and micron-scale B4C particles. Three different array layouts were designed and fabricated: compact balls in the front panel (F-C), non-compact balls in the front panel (F-NC), and compact balls inside the target (I-C). The penetration resistance properties were tested using a 12.7 mm armor-piercing incendiary (API). The results show that there are no significant internal defects, and the ceramic balls are well-bonded with the matrix composite. The F-NC structure behaves the best penetration resistance with minimal overall damage; the I-C structure has a large area of spalling and the most serious damage. Finite element simulation reveals that the ceramic balls play a major role in projectile erosion; in the non-compact structure, the composite materials between the ceramic balls can effectively disperse the stress, thereby avoiding the damage caused by direct contact between ceramic balls and improving the efficiency of ceramic ball erosion projectiles. Furthermore, it is essential to have a certain thickness of supporting materials to prevent spalling failure caused by stress wave transmission during penetration. This multi-scale composite exhibits excellent ballistic performance, providing valuable insights for developing anti-penetration composite armor in future applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.