Abstract

A novel molybdenum disulfide/carbon (MoS2/C) nanocomposite is synthesized by a simple hydrothermal method using glucose as a carbon source and Pluronic F127 as promoting agent in presence of MoS2 nanoparticles and followed by carbonization. Pluronic F127 is used as an essential agent which inhibits the spontaneous formation of carbon microspheres during the hydrothermal reaction. The composite electrode exhibits excellent cycling stability and rate capability, delivering a reversible capacity of 882.6 mA h g−1 at a current density of 50 mA g−1 and a capacity retention of 82.8% after 100 cycles at a current density of 100 mA g−1. At a higher current density of 300/500 mA g−1, it still retains a capacity of 603.6/461.6 mA h g−1 respectively, as compared to 295.6/228.4 mA h g−1 for the pristine MoS2 electrode. The composite shows favorable electrochemical kinetics compared with pristine MoS2 due to the incorporation of homogenous conductive carbon layer and its nanostructured morphology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.