Abstract

ObjectivesWe aimed to confirm whether autofluorescence emitted from teeth can predict tooth bleaching efficacy and establish a novel model combining natural color parameters and tooth autofluorescence data to improve the predictability of tooth bleaching. MethodsA total of 61 tooth specimens were prepared from extracted human molars/premolars and immersed in 35% hydrogen peroxide for 1 h for tooth bleaching. The changes in laser-induced fluorescence (∆LIF) were assessed using Raman spectrometry. Tooth color and autofluorescence data were obtained using quantitative light-induced fluorescence (QLF) technology. Pearson correlation analyses were used to confirm the relationship between ∆LIF and autofluorescence. Intraclass correlation coefficients (ICC) were calculated to compare the conventional and new prediction models. Decision tree analysis was performed to evaluate clinical applicability. ResultsThe yellowness-to-blueness value from fluorescence imaging showed a moderate correlation with ∆LIF (r= –0.409, p = 0.001). The degree of agreement between the actual efficacy and that predicted by our novel model was high (ICC=0.933, p = 0.002). Decision tree analysis suggested that tooth autofluorescence could be a key factor in prediction of tooth bleaching outcomes. ConclusionsOur findings showed that autofluorescence detected from QLF images may be used to predict tooth bleaching efficacy. Our proposed model appeared to improve the predictability of tooth bleaching.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.