Abstract

The fabrication and characterization of a novel micromachined high-field asymmetric waveform-ion mobility spectrometer (FA-IMS) is described. The spectrometer has a 3×1×0.2 cm 3 rectangular drift tube and a planar electrode configuration. The planar configuration permits simple construction using microfabrication technology where electrodes and insulating regions are made with deposited metal films on glass substrates. The spectrometer is characterized using organic vapors (including acetone, benzene, and toluene) at ambient pressure and with air as the drift gas. Ions are created in air at ambient pressure using photo-ionization with a 10.6 eV photo discharge lamp ( λ=116.5 nm). The micromachined FA-IMS exhibited behavior consistent with conventional FA-IMS designs where compensation voltage was effective in discriminating between ion species in high-field radio-frequency (RF) regimes. Excellent resolution of benzene and acetone ions in mixtures illustrates an advantage of the FA-IMS over low-field ion mobility spectrometry. Detection of toluene at concentrations as low as 100 ppb has been demonstrated. Improvements in detection limits, by as much as 100×, are anticipated with improved ionization source designs. The ability to transport both positive and negative ions simultaneously through the FA-IMS drift tube is demonstrated here for the first time. Ion intensity is found to be proportional to sample concentration, although clusters of sample ions and neutrals at high concentrations illustrate the need for a drift region which is kept free of sample neutrals. Micromachining promises cost, size, and power reductions enabling both laboratory and field instruments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.