Abstract

Aluminium honeycomb structure has been recognized as an exceptional lightweight energy absorber in transportation, construction and aerospace industries. An innovative fabrication method based on friction stir welding is proposed to enhance the crashworthiness property of aluminium honeycomb and address the challenges with conventional fabrication methods. Moreover, a lab-scale fixture is designed to demonstrate the feasibility of the suggested method for industrial use. Various fabricated honeycombs with different core heights and cell counts are subjected to quasi-static flatwise compression tests to investigate their crushing characteristics. The crashworthiness parameters like yield stress, average plateau stress, specific energy absorption are analysed and compared with theoretically predicted crushing strength. The failure mode of the structure is also discussed, showing the influence of non-optimal welding parameters. Experimental results indicate that average crush force and specific energy absorption do not differ significantly with cell count and core height. The specimens under flatwise compression fold with plastic hinges symmetrically positioned without any rupture of the weld. Specific compression property of the fabricated honeycomb has been compared with other aluminium honeycombs fabricated using other methods, which favours the friction stir welded honeycomb over the other conventional counterparts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.