Abstract

Hair lipids localized at the cell membrane complex (CMC) play a part in chemical diffusion, cell cohesion, and mechanical strength. There is no method currently available to visualize hair lipids at the CMC. We found that scanning electron microscopy (SEM) of a transversely polished hair plane followed by argon sputter etching (ASE) provides a specific characteristic image consisting of circular patterns (CP) and stitch patterns (SP) at the cortex. Both the CP and the SP are formed as convex structures and are associated with melanin granules and the CMC, respectively. While the convex formation of the CP is not affected by any treatments tested, that of the SP disappeared following treatment of hair fibers with organic solvents and reappeared following incubation of the solvent-treated hair fibers with melting lipids, which suggests that the hair lipids are responsible for the convex SP. Other treatments, such as chemical fixation, thin sectioning, and pre-/post-incubation of the hair plane, reduce or abolish the convex formation of the SP. These findings suggest that the following pathway leads to the convex formation of SP during ASE: (a) joule heat is generated on the surface by violent collisions of argon ions, (b) melting CMC lipids ooze out from the inside to the surface, and (c) CMC lipids that have oozed out are chemically changed, leading to the final convex formation of the SP. With ASE-SEM, visualization of hair lipids as convex structures of SP should enable us to characterize the fine structure and localization of hair lipids and to clarify the roles and functions of the CMC of human hair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.