Abstract

Intratumoral infusion is the most commonly used method for viral gene delivery in clinical trials for cancer treatment. However, a potential problem in this approach is that viral vectors may disseminate from tumor to normal tissues during and after the infusion. To reduce the dissemination, we developed a novel method based on a biocompatible polymer, poloxamer 407, which could significantly increase the viscosity of virus suspension when the temperature was changed from 4 degrees C to 37 degrees C. With this method, we could significantly increase transgene expression in solid tumors and reduce virus dissemination by 2 orders of magnitude after intratumoral infusion of adenoviral vectors. The mechanism of reduction was likely to be that the viscous poloxamer solution blocked convection of viral vectors in the interstitial space and the lumen of microvessels in the vicinity of the infusion site. This method has a potential to be used in the clinic for enhancing efficacy and reducing toxicity in viral gene therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.