Abstract

In quantum-field theory in curved spacetime, two important physical quantities are the expectation value of the stress-energy tensor [Formula: see text] and of the square of the field operator [Formula: see text]. These expectation values must be renormalized, which is usually performed via the so-called point-splitting prescription. However, the renormalization method that is usually implemented in the literature, in principle, only applies to static, spherically-symmetric spacetimes, and does not readily generalize to other types of spacetime. We present a novel implementation of the renormalization procedure which may be used in the future for more general spacetimes, such as Kerr black hole spacetime. As an example, we apply our method to the renormalization of [Formula: see text] for a massless scalar field in Bertotti–Robinson spacetime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.