Abstract

Aim: The aim was to validate the Systolic Time Intervals (STI) measured by Ballistocardiography (BCG) with STI derived from simultaneously performed Transthoracic Echocardiogram (TTE) and attempt to create an AI algorithm that automatically calculates Tei Index from BCG tracings.
 Study design: Cross-sectional study.
 Place and Duration of Study: Department of Cardiology and Department of Electrophysiology of Sri Jayadeva Institute of Cardiovascular Sciences & Research, Bangalore, India, between January 2020 and January 2021.
 Methodology: Two hundred seventy-four patients with clinically indicated TTE were enrolled in the study, average age was 52. Simultaneous recordings on BCG and TTE were done. 150 patients had clinically usable TTE images for accurate calculations. STI was calculated independently by operators experienced in TTE and BCG. Results were compared using Pearson’s R. A proprietary AI algorithm for automatically calculating the MPI, was trained over a subset of patients. Its accuracy in detecting STI was compared to that of TTE and manually calculated STI from BCG.
 Results: There was a strong positive correlation (r=0.766, P<0.00, 99%CI [0.691,0.824]) between the TTE and BCG derived MPI values. The result was validated over predetermined subgroups of subjects with reduced EF (EF<50) and subjects with normal EF (EF>=50). The AI algorithm had correlation of 0.54(p<0.01) with the MPI calculated by TTE and 0.34(P<0.10) with the manually calculated MPI on the BCG.
 Conclusion: BCG derived manual and automated MPI correlates well with TTE derived MPI in a variety of EF fraction subgroups. Automated calculation algorithms for MPI derived from BCG remain a work under progress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.