Abstract
Most traditional indoor---outdoor scene classification approaches utilize the simple statistics of the low-level features, such as colors, edges, and textures. However, the existence of colors similar to sky or grass often yields the false positives. To cope with this deficiency, we focus on the orientation of low-level features in this paper. First, the image is partitioned into five block regions, whose features are differently weighted in the following classification stage according to the block positions. The edge and color orientation histogram (ECOH) descriptors are defined to represent each block efficiently. Finally, all ECOH values are concatenated to generate the feature vector and fed into the SVM classifier for the indoor---outdoor scene classification. To justify the efficiency and robustness of the proposed method, the evaluation is conducted over 1200 images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.