Abstract

Skin lesion classification plays a crucial role in diagnosing various gene and related local medical cases in the field of dermoscopy. In this paper, a new model for the classification of skin lesions as either normal or melanoma is presented. The proposed melanoma prediction model was evaluated on a large publicly available dataset called ISIC 2020. The main challenge of this dataset is severe class imbalance. This paper proposes an approach to overcome this problem using a random over-sampling method followed by data augmentation. Moreover, a new hybrid version of a convolutional neural network architecture and bald eagle search (BES) optimization is proposed. The BES algorithm is used to find the optimal values of the hyperparameters of a SqueezeNet architecture. The proposed melanoma skin cancer prediction model obtained an overall accuracy of 98.37%, specificity of 96.47%, sensitivity of 100%, f-score of 98.40%, and area under the curve of 99%. The experimental results showed the robustness and efficiency of the proposed model compared with VGG19, GoogleNet, and ResNet50. Additionally, the results showed that the proposed model was very competitive compared with the state of the art.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.