Abstract

Ewe efficiency has traditionally been defined as the ratio of litter weight to ewe weight; given the statistical properties of ratio traits, an alternative strategy is proposed in the present study. The concept of using the deviation in performance of an animal from the population norm has grown in popularity as a measure of animal-level efficiency. The objective of the present study was to define novel measures of efficiency for sheep, which considers the combined weight of a litter of lambs relative to the weight of their dam, and vice versa. Two novel traits, representing the deviation in total litter weight at 40 d (DEV40L) or weaning (DEVweanL), were calculated as the residuals of a statistical model, with litter weight as the dependent variable and with the fixed effects of litter rearing size, contemporary group, and ewe weight. The deviation in ewe weight at 40-d postlambing (DEV40E) or weaning (DEVweanE) was derived using a similar approach but with ewe weight and litter weight interchanged as the dependent variable. Variance components for each trait were estimated by first deriving the litter or ewe weight deviation phenotype and subsequently estimating the variance components. The phenotypic SD in DEV40L and DEVweanL was 8.46 and 15.37 kg, respectively; the mean litter weight at 40 d and weaning was 30.97 and 47.68 kg, respectively. The genetic SD and heritability for DEV40L was 2.65 kg and 0.12, respectively. For DEVweanL, the genetic SD and heritability was 4.94 kg and 0.13, respectively. The average ewe weight at 40-d postlambing and at weaning was 66.43 and 66.87 kg, respectively. The genetic SD and heritability for DEV40E was 4.33 kg and 0.24, respectively. The heritability estimated for DEVweanE was 0.31. The traits derived in the present study may be useful not only for phenotypic benchmarking of ewes within flock on performance but also for benchmarking flocks against each other; furthermore, the extent of genetic variability in all traits, coupled with the fact that the data required to generate these novel phenotypes are usually readily available, signals huge potential within sheep breeding programs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.