Abstract

In this paper, a new high-voltage level shifter (HVLS) structure is proposed, which has a significantly improved transient response over existing structures. To overcome signal transfer delay of the conventional HVLS caused by parasitic capacitance due to high-voltage MOSFETs, this structure employs a novel circuit module inverse Schmitt trigger to drive the pull-up transistors of conventional HVLS. As a result, the Miller Plateau caused by parasitic capacitance can be minimized. Hence, the overall transfer delay of the structure is significantly reduced. The simulation results based on SPECTRE and 0.5 $$\upmu $$μm high-voltage CMOS process show that compared to other currently available structures whose transfer delays are several nanoseconds on average, the proposed structure is able to provide a nanosecond transfer delay without using large boost capacitors which are impractical to be integrated or using complex logic units which decrease reliability of circuit. Also, the typical transfer delay of the proposed structure is a constant 1.3 ns, which is irrelevant to parasitic capacitance and insensitive to transfer voltage level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.