Abstract
The recently proposed twin parametric insensitive support vector regression, denoted by TPISVR, gets perforce regression performance and is suitable for many cases, especially when the noise is heteroscedastic. However, in the TPISVR, it solves two dual quadratic programming problems (QPPs). Moreover, compared with support vector regression (SVR), TPISVR has at least four regularisation parameters that need regulating, which would affect its practical applications. In this paper, we increase the efficiency of TPISVR from two aspects. First, by introducing the least squares method, we propose a novel least squares twin parametric insensitive support vector regression, called LSTPISVR for short. LSTPISVR attempts to solve two modified primal problems of TPISVR, instead of two dual problems usually solved. Compared with the traditional solution method, LSTPISVR can improve the training speed without loss of generalisation. Second, a discrete binary particle swarm optimisation (BPSO) algorithm is introduced to do the parameter selection. Computational results on several synthetic as well as benchmark datasets confirm the great improvements on the training process of our LSTPISVR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Collaborative Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.