Abstract
Dismantling of complex networks is a problem to find a minimal set of nodes in which the removal leaves the network broken into connected components of sub-extensive size. It has a wide spectrum of important applications, including network immunization and network destruction. Due to its NP-hard computational complexity, this problem cannot be solved exactly with polynomial time. Traditional solutions, including manually-designed and considerably sub-optimal heuristic algorithms, and accurate message-passing ones, all suffer from low efficiency in large-scale problems. In this paper, we introduce a simple learning-based approach, CoreGQN, which seeks to train an agent that is able to smartly choose nodes that would accumulate the maximum rewards. CoreGQN is trained by hundreds of thousands self-plays on small synthetic graphs, and can then be able to generalize well on real-world networks across different types with different scales. Extensive experiments demonstrate that CoreGQN performs on par with the state-of-art algorithms at greatly reduced computational costs, suggesting that CoreGQN should be the better choice for practical network dismantling purposes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Machine Learning and Cybernetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.