Abstract

Image segmentation plays a crucial role in many medical imaging applications. In this paper, we present a novel algorithm for fuzzy segmentation of magnetic resonance imaging (MRI) data. The algorithm is realized by modifying the objective function in the conventional fuzzy C-means (FCM) algorithm using a kernel-induced distance metric and a spatial penalty on the membership functions. Firstly, the original Euclidean distance in the FCM is replaced by a kernel-induced distance, and thus the corresponding algorithm is derived and called as the kernelized fuzzy C-means (KFCM) algorithm, which is shown to be more robust than FCM. Then a spatial penalty is added to the objective function in KFCM to compensate for the intensity inhomogeneities of MR image and to allow the labeling of a pixel to be influenced by its neighbors in the image. The penalty term acts as a regularizer and has a coefficient ranging from zero to one. Experimental results on both synthetic and real MR images show that the proposed algorithms have better performance when noise and other artifacts are present than the standard algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.