Abstract
In this work we have reported the formulation of a novel ionic liquid-in-oil (IL/O) microemulsion where the polar core of the ionic liquid, 1-ethyl-3-methylimidazolium n-butylsulfate ([C2mim][C4SO4]), is stabilized by a mixture of two nontoxic nonionic surfactants, polyoxyethylene sorbitan monooleate (Tween-80) and sorbitan laurate (Span-20), in a biological oil phase of isopropyl myristate (IPM). The formation of the microemulsion droplets has been confirmed from the dynamic light scattering (DLS) and phase behavior study. To assess the dynamic heterogeneity of this tween-based IL/O microemulsion, we have performed an excitation wavelength dependent fluorescence resonance energy transfer (FRET) from coumarin 480 (C480) to rhodamine 6G (R6G). The multiple donor-acceptor (D-A) distances, ∼15, 30, and 45 Å, obtained from the rise times of the acceptor emission in the presence of a donor can be rationalized from the varying distribution of the donor, C480, in the different regions of the microemulsion system. With increasing the excitation wavelength from 375 to 408 nm, the contribution of the rise component of ∼240 ps which results the D-A distance of ∼30 Å increases significantly due to the enhanced contribution of the C480 probe molecules closer to the acceptor in the ionic liquid pool of the microemulsion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.