Abstract
Passive control is preferred due to its simplicity and low power consumption. A common passive control device is the Impact Damper which consists of a freely moving mass constrained by two stops inside a container mounted on the primary system. Researchers attempted to develop the impact damper for many decades. Their objective was to decrease the high accelerations, contact forces and noise levels. In this paper, a novel type impact damper consisting of linear chain of different sizes spherical balls is introduced. The Linear Particle Chain (LPC) impact damper is based on dissipating the kinetic energy of the primary system by placing a small ball between each two large balls in the chain arrangement. The small ball will have numerous collisions with the larger balls when the primary system is excited. This behavior leads to dissipate part of the kinetic energy at each collision with the large balls. The LPC impact damper is validated by comparing its responses with the single unit conventional impact damper. The free vibration of a single degree of freedom system equipped with the damper is studied. It has been shown that the LPC impact damper is more efficient than the conventional impact damper. A parametric study is conducted to investigate the effective number of balls and the efficient geometry of the impact damper to be used in a specific available space in the primary system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.