Abstract
In this paper, a novel and highly efficient inexact Full Adder cell by exploiting two logic styles including conventional CMOS (C-COMS) and pass transistor logic (PTL) are presented. The so-called carbon nanotube field-effect transistor (CNFET) technology is used to implement circuits at the transistor level. To justify the efficiency of our design, extensive simulations are performed at the transistor level as well as application level. Transistor-level simulations which are carried out by the HSPICE 2008 tool, demonstrate at least 12% higher performance in terms of power-delay-area product (PDAP) of the proposed circuit compared to the latest designs. At the application level, by using the MATLAB tool, inexact Full Adders are employed in the structure of the ripple carry adder (RCA) that is applied in motion and edge detection algorithms. Computer simulation results confirm the appropriate quality of the output images in terms of the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) criteria. At last, to make a compromise between hardware and application level parameters, the power-delay-area-1/PSNR product (PDAPP) and power-delay-area-1/SSIM product (PDASP) are considered as figures of merit. The proposed circuit shows remarkable improvement from the PDAPP and PDASP points of view compared to its counterparts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Journal on Emerging Technologies in Computing Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.