Abstract

A novel Nth order finite element for interior acoustics and structural dynamics is presented, with N arbitrarily large. The element is based upon a three-dimensional extension of the Coons patch technique, which combines high-order Lagrange and Hermite interpolation schemes. Numerical applications are presented, which include the evaluation of the natural frequencies and modes of vibration of (1) air inside a cavity (interior acoustics) and (2) finite-thickness beams and plates (structural dynamics). The numerical results presented are assessed through a comparison with analytical and numerical results. They show that the proposed methodology is highly accurate. The main advantages however are (1) its flexibility in obtaining different level of accuracy (p-convergence) simply by increasing the number of nodes, as one would do for h-convergence, (2) the applicability to arbitrarily complex configurations, and (3) the ability to treat beam- and shell-like structures as three-dimensional small-thickness elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.