Abstract

Egg custard is a common dish on the dining table and exhibits a uniform porous structure after freeze-drying. The protein within egg custard is a rich source of carbon and nitrogen, and the custard’s unique microstructure and adjustable electrical properties make it a potential porous carbon precursor. Herein, nitrogen in situ doped porous carbons (NPCs) and potassium-carbonate-modified NPCs (PNPCs) are obtained through a simple gelation and carbonization process using egg white as the raw material. The unique morphologies of the porous carbon are inherited from the protein and include fibrous clusters, honeycomb holes, and a grooved skeleton. Their excellent impedance matching and effective internal loss make the obtained porous carbons good candidates for lightweight electromagnetic (EM) wave absorbers without the need to dope with metal elements. As a representative porous carbon, PNPC10-700 has multiple structures, including fibrous clusters, honeycomb holes, and a porous skeleton. Moreover, it achieves a maximum reflection loss value of −66.15 dB (with a thickness of 3.77 mm) and a broad effective absorption bandwidth of 5.82 GHz (from 12.18 to 18.00 GHz, with a thickness of 2.5 mm), which surpasses the reported values in most of the literature. Thus, gelation combined with the further carbonization of egg white (protein) is a new method for designing the morphology and EM properties of porous carbon absorbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.