Abstract
AbstractThis study is aimed at identifying key indicators to increase knowledge-based process optimization for renewable energy projects. Within this context, a novel fuzzy decision-making model is introduced that has two different stages. The first stage is related to the weighting of the knowledge-based determinants of process optimization in investment decisions by using quantum picture fuzzy rough sets (QPFR)-based multi-step wise weight assessment ratio analysis (M-SWARA). On the other side, the second stage consists of ranking the investment alternatives for process optimization in renewable energy projects via the QPFR-based technique for order preference by similarity (TOPSIS) methodology. The main contribution of this study is that a priority analysis is conducted for information-based factors affecting the performance of renewable energy projects. This situation provides an opportunity for the investments to implement appropriate strategies to increase the optimization of these investments. It is concluded that quality is the most essential indicator with respect to the process optimization of these projects. It can be possible to increase the efficiency of these projects by using better quality products. Innovation has an important role in ensuring the use of quality products in environmental sustainability. Owing to new technologies, it is easier to use more effective and innovative products. This condition also contributes to increasing the efficiency of the energy production process. Furthermore, the findings also denote that the most appropriate energy innovation alternative is the variety of clean energy sources. By focusing on different clean energy alternatives, the risk of interruptions in energy generation can be minimized. In other words, the negative impact of climatic conditions on energy production can be lowered significantly with the help of this situation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.