Abstract

The recent success of machine learning has accelerated the development of data-driven lithium-ion battery state estimation and prediction. The lack of accessible battery operation data is one of the primary concerns with the data-driven approach. However, research on battery operation data augmentation is rare. When coping with data sparsity, one popular approach is to augment the dataset by producing synthetic data. In this paper, we propose a novel fusion method for synthetic battery operation data generation. It combines a generative, adversarial, network-based generation module and a state-of-charge estimator. The generation module generates battery operation features, namely the voltage, current, and temperature. The features are then fed into the state-of-charge estimator, which calculates the relevant state of charge. The results of the evaluation reveal that our method can produce synthetic data with distributions similar to the actual dataset and performs well in downstream tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.